
I.I -'--

NRL Report 7847

On the Need for Fewer Restrictions
in Changing Compile-Time Environments

DAVID L. PARNAS

Information Systems Stajff
Conmmin unication Sciences Division

and

Technische HI-ochscule Darmstadt, Darmstadt, West Germ any

JOHN E. SHORE

Infjrmaltion Systems Staff
Communication Sciences Division

W. DAVID ELLIOTT

I njbrmalion Processing Systems Branch
Communication Sciences Division

.6.

a'

1; :.

.1 .

tC;=

;',.

.~ ..

iF,
:i ie

H7

,..

January 10, 1975

NAVAL RESEARCH LABORATORY
Washington, D.C.

Approved for public release; distribution unlimited. z3 DO-14

:3

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
READ INSTRucTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

NRL Report 7847
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

ON THE NEED FOR FEWER RESTRICTIONS IN An interim report on a
CHANGING COMPILE-TIME ENVIRONMENTSo tinuinglRL problem

E. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(a)
David L. Parnas
John E. Shore
W. David Elliott

9. PERFORMING ORGANIZATION NAME AND ADDRESS tO. PROGRAM ELEMENT, PROJECT, TASKAREA & WORK UNIT N.JMBERS
Naval Research Laboratory B02-18 -(XF21-241-021-K211);
Washington, D.C. 20375 B02-15-(RF-21-222-401-4356)

IL. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Department of the Navy January 10, 1975
Office of Naval Research 13. NUMeE R OF PAGES

Arlington. Va. 22217 10
14. MONITORING AGENCY NAME AI ADDRESS(If diflerent from Controlltin Office) 15. SECURITY CLASS. (of This report)

Unclassified
IS5. DECLASSIFICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

lB. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide If necessar-y md identify by block numnber)
Compilers
Compiler environments
Macros
Programming Languages

sU ABn . AL (Cniu On rees alo If neesrInddnit yboknn
-O ASRAC~T (C~ontlnue or. rev.re s[ide if necaaaary eltd idorntify by block tnunher)

During the compilation of a statement, compilers for current programming languages enforce
rigid restrictions on changes in the set of associations between names and declarations, that is, on
changes in the comnile-timrn environmenf of the statemnt. Those ttl Anl hbi t the writing o:
well-structured, modular programs, because such programs tend to require frequent switching be-
tween the environments associated with different modules. With current compilers, arbitrary
switching of environments must be handled by means of macros at compile time or deferred until
run time.

Continued

I

DD JAN 7 1473 EDITION OF I NOV 65 IS OBSOLETE
S/N 0102-014-6601

i SECURITY CLASSIFICATION OF THIS PAGE (fl4n Doit Fnisrad)

-,AlJ'kITY CLASSIFICATlON OF THIS PAGE(When Dat e Entered)

Conventonal macros are difficult to use in situations where it is desirabie tat the macro writer
and the macro user be ignorant about each other's programs- When deferred until run time,
frequent switching of environments becomes costly owing to the overhead associated with subrout-
tine calls. In order to encourage the compartmentalization of program information and at the
same time to allow efficient code generation, we propose the relaxation of present restrictions on I
changes in the compile-time environment. Specifically, we propose that a group of declarations
can be defined as an environment and that arbitrary pieces of program text can state within whict
environment they are to be compiled. With such a mechanism, program text can be intermixed
by means of macros without having to make the relevant declarations global or having to repeat {
the declarations in places other than the environment's definition.

ii
SECURITY CLASSIFICATION OF TOIS PAGVf-FhO Dais tnered)

CONTENTS

1. INTRODUCTION AND MOTIVATION 1

1.1 Ignorant Programming 1
1.2 Impracticality of Subroutines 1
1.3 Macros. 1

2. COMPILE TIME ENVIRONMENT 2

3. RUN-TIME ENVIRONMENT 2

4. ENVIRONMENT CHANGES AND MODULAR PROGRAMMING.. 2

5. AN ENVIRONMENT CHANGING FACILITY 3

6. ON RESTRICTING ACCESS 4

7. RELATION TO THE PROBLEM OF MACROS 4

8. AN ILLUSTRATIVE EXAMPLE 4

9. AN IMPORTANT UNSOLVED PROBLEM 6

10. ACKNOWLEDGMENTS 6

REFERENCES... 7

iii

ON THE NEED FOR FEWER RESTRICTIONS IN CHANGING
COMPILE-TIME ENVIRONMENTS

1. INTRODUCTION AND MOTIVATION

To encourage the compartmentalization of information and at the same time to al-
low efficient code generation, we propose the relaxation of present restrictions on changes
in the compile-time environment. The proposal is an attempt to make the implementa-
tion of the program organization and specification techniques described in Refs. 1,2, and
3 practical. In contrast to other work on languages for structured programming, we do
not address mechanisms for using this feature to implement any particular type of ab-
straction (e.g. abstract data types). Our concern is only with returning to the program-
mer a capability he needs to write well-structured programs. Other mechanisms are left
for higher levels.

1.1 Ignorant Programming

The ease of integrating and changing the program described in Ref. 1 was achieved
primarily by dividing the task into work assignments (modules) using the "information
hiding principle" (Ref. 2). The programmers assigned to any given work assignment must
be able to write, test, and improve their programs without any knowledge of the other
programs in the system beyond that given by the specifications of those programs (Ref. 3).

1.2 Impracticality of Subroutines

The implementation techniques used for the experiment described in Ref. 1 are not
generally suitable for the production of efficient programs. Each module in that experi-
ment was implemented as a collection of Fortran subprograms and all transfers of infor-
mation and control between modules made use of the subroutine call mechanism. When
a program has been decomposed into modules in accordance with strict criteria for the
compartmentalization of information, control at run time remains within a module for
relatively brief periods of time. Under these conditions, the time spent in executing call
and return sequences may be much higher than the remaining processing time. Further-
more, opportunities for optimization may be lost. Because information kept separate at
write time is needed together at code generation time and at run time, compartmentaliza-
tion offers advantages at write time, but potential disadvantages later.

1.3 Macros

When the execution time of the subroutine body is shorter than that of the subrou-
tine call, a standard technique used is to implement the procedure as a macro that inserts

Note: Manuscript submitted November 14, 1974.

1

PARNAS, SHORE, AND ELLIOTT

the text of the body where the call would have appeared. After invoking a macro, the
comniler roclimcc itc nrracaind at tho hoginnina of tho incaort+arl *ovt ilio as if a mnrrn

& t~bJa&~L ~ run.t~a~ - ...- .. E....... a. A. ...- J - - J -TV as

had never been involved. Owing to possible conflicting assumptions about the environment,
conventional macros are difficult to use in situations where it is desirable that the macro
writer and the macro user be ignorant about each other's programs.

2. COMPILE-TIME ENVIRONMENT

To compile a given statement, compilers make use of associations between names and
declarations. The names refer to variables and operators, whereas the declarations, which
may be built in, refer to attributes and define data structures and procedures. We refer
A. it__ A._:v__ o _ _1 : -__ - _ _L -v _ 1_ - _-~..L -- -- As
to LI1CtbSVt U4SSUIUIUS US Llte ctimpiUe-tille eIVWKUIiLiJeClL ut Lune statemen.

The restrictions on the way that environments may change as one progresses through
program text are quite strong in all compiler languages known to us. In Fortran, the
environment is fixed for a compilation unit (program or subprogram). In Algol-like lan-
guages, one may augment an environment by adding new associations, which may suppress
old ones, and later remove them by terminating the scope of their declaration, which may
unrnusr nid nnes However since the environment changes as the nrnarnm text is pro-
cessed sequentially, one may not reenter an environment that has been previously exited.
vazl uA iau ut aCd iU i I uiua akl Mt; LILL dUtbleU iiI lny bSttatIlltiL LIML4L nppewus aUtIa kIJt

end of that block in the text.

3. RUN-TIME ENVIRONMENT

The run-time environment of a program is defined by the set of associations between
address parts Of instaructionns and physical memory Inpagionn The anvirnnmnn+ is definea
by the address computation algorithm, the contents of any addressing registers, and the
contents of those memory locations that may be used in mhe address computation process.

When we examine the way that the run-time environment of a compiled program may
change during execution, we find none of the restrictions mentioned in the previous sec-
tion. Changes in environment are effected by changing the contents of the registers and
tables; there are almost no restrictions on such changes.

4. ENVIRONMENT CHANGES AND MODULAR PROGRAMMING

When modules attempt to hide design decisions from each other, the compile-time
environments of separate modules are disjoint. Programs from one module do not include
references to data structures or operators that are defined inside another. A transfer of
control from one module to another involves a change of environment.

When the transfer between environments is made by a procedure or subroutine call,
the environment change is made at run time, when there are no major restrictions on the

2

NRL REPORT 7817

environment changes that may occur. Standard procedure call mechanisms make time-
and space-consuming environment cihanges by saving and later restoring the contents of
registers and memory locations used in address calculations and certain general registers
as well. A compiler that could generate code while making only the necessary changes
would require detailed knowledge of both programs simultaneously and would be quite
difficult to construct. Even with such a compiler, one would forego opportunities for
optimization.

When macros are used as the transfer mechanisms between modules, the compiler can
know the characteristics of both the calling and the called code, using only local knowl-
edge about the section of program being compiled. The use of macros can result in rel-
atively efficient transfers between modules because the macro writer can take advantage
of his knowledge of precisely what environment changing is necessary.

When design decisions are hidden within modules, the pieces of text inserted by
macros from a given source module often communicate by means of variables that the
macros have in common but that are not accessible in the surrounding and intervening
text where they are inserted by macro expansion. In other words, the macro text must
be compiled in an environment that is entirely disjoint from that of the surrounding code
but identical to that used in other (possibly quite remote) parts of the program. As dis-
cussed in the foregoing, current programming languages do not permit this.

5. AN ENVIRONMENT CHANGING FACILITY

To provide a facility with which pieces of code from completely separate write-time
environments are executed without complete changes of run-time environments, the com-
piler must be capable of transferring between environments at compile time while pro-
ducing code that appears to have been compiled from statements in a single larger environ-
ment. Run-time environment changes can be limited to those necessitated by the avail-
ability of addressing registers.

We propose a relatively direct approach. An environment may be defined by sur-
rounding a group of declarations with a "startenvi" statement and an "endenvi" statement,
where a "startenvi" or "endenvi" statement consists of the keyword followed by the name

anda smicolo. Variaitables declared in an inviuonflet are locai to that environment un-
less declared "accessible". Environments may be declared within environments, and envi-
ronment names are local to the environment in which they are declared. The outermost
set of environment names is known everywhere unless suppressed by reuse of the name.
The order in which environment names appear within the description of an environment
is irrelevant. The keywords "enter " and "leave " followed by an environment name
cause changes of environment.

The "enter " statement invokes the declarations defined within the named environ-
ment. The "leave statenment eancels the last "enteor ", rering the prviu envion;-
ment. Each "enter statement must have a matching "leave " statement. It is important
to note that environment changes may be found anywhere: in the middle of statements,
in the middle of arithmetic expressions, in the middle of declarations, etc.

3

PARNAS, SHORE, AND ELLIOTT

Because we have no experience in the use of this simple syntax proposal, we include
it not as a specific language design, but as an illustration. When the facility is incorporated
in a full language, an appropriate notation can be found that is consistent with the rest of
the language.

A -ON RRqTRIfTTMIr AVCRCFZ

We are not proposing that higher level languages or system implementation languages
provide the unrestricted access rights available in assembler languages. On the contrary,
we feel that the restriction of access is essential to controlling the structure of programs.
We believe, however, that the restrictions in current languages are the wrong restrictions.
They are so strong that they force the use of global variables with the result that access-
right restrictions are too weak. The proposed environment-changing facility will reduce
the need for global variables (Ref. 4).

7. RELATION TO THE PROBLEM OF MACROS

The proposed environment-changing facility can be used to solve the problems of
macros previously discussed. In simplistic terms, we hope to gain efficiency by replacing
procedure calls with macro calls, and to provide the capability of compiling the names of
variables appearing in text produced by a macro in the environment containing the macro
definition and not in the environment of the macro call. This is not supported in lan-
gulages in which. once a macro expansion ; produced the comrler forgets thaf it was
not part of the original text. Using the concept of explicit environment transfer we can
surround any macro-produced text with an "enter " and corresponding "leave " so that
the compiler will automatically change environments. Further, parameters passed to a
macro can be returned and subsequently interpreted in the environment of the caller who
passed them. This will allow variable names in the macro environment and actual param-
eters to conflict without any problems. Conflicting names no longer conflict!

R AN !T T.TNRTRAVTTVR VYAMPT.F

The frequent module changes that result from information-hiding techniques can
lead to frustrating inefficiencies if an initial call leads finally to something relatively simple
like an array reference. In such situations, the environment-switching facility that we have
proposed would be particularly useful.

Consider a message-processing system in which, as part of the processing involved in
one work assignment, it is necessary to place on a stack message identifiers called "date
timo groups" Thic functo ic nrfr-And mo-e *ha fnlln,.rinaf anna fh,* ina<2n n Q within a

work assignment called module A:

4

NRL REPORT 7847

integer k;

push(date time group(k));

e form in which a "'date timeSgroup" is stored or computed is hidden froin mod-
ule A in module B. The writer of module B decides to place messages into a large array
called "messages" and to service requests for parts of the message by using macros that
return appropriate array references. The following code appears in module B:

startenvi Y; integer array messages[1000,10001;

accessible macro date-time group(m);

string m;

return with 'enter Y messages [300,20+ leave Y' m 'enter YJ leave Y';

endenvi Y;

The stack is maintained by yet a third module. The following code appears in module C:

startenvi X;

integer array stack [1:10001;

integer i;

accessible macro reset; return with 'enter X i-O leave X>-

accessible macro depth; return with 'enter X i leave X';

accessible macro val; return with 'enter X stack ji] leave X';

accessible macro pop; return with 'enter X i:si-1 leave X';

accessible macro push (it); string it;

return with 'enter X i:i+1; stack [ij :-leave XV it;

endenvi X;

5

PARNAS, SHORE, AND ELLIOTT

By invocation of the macros "push" and "date timegroup" the "push" statement
becomes

,ent~sr X l-=i7+l: dfaek Hil *-1nwu X Pnttr V meusagps FRMA 9.0 +

leave Y k enter Y) leave Y;

which can then be compiled into efficient code that refers to variables defined in all three
modules.

9. AN IMPORTANT UNSOLVED PROBLEM

tflV O'L Lwu jj1UjjUUA eiivauiiiiiXieit-uiaiiiljlbIez V.L LLpvu AUUeC f l a S+UUt Uet4

representation a program representation with no apparent structure. We consider this
completely acceptable only so long as human beings need never study the resulting un-
structured program. Whatever structured programming is, its value comes when humans
process programs, not when the machines process them. However, run-time errors will
force the programmer to study the unstructured program representation resulting from the
macro expansions. To solve this problem one must (a) require that every program follow
a relatively rigid procedure for handling errors and (b) keep records about the expansion
so that when an error is found, it can be associated with the proper higher level con-

) + 2r -a Al- A- + + A, t-f __ _ A A +

lems require considerable further study. The authors ask communication from those who
have suggestions or experience with either problem.

10. ACKNOWLEDGMENTS

We are happy to acknowledge the many useful comments of Dr. James Miller of
Intermetrics, Inc. during discussions of the applicability of the concepts discussed in this
paper to the rIO A 17-. f1).4- -.44-0-1 4- T1-f.

wi~elbiteuo-* pi:usiarxnziin'g ai-lui-uta~e±te. u6i- vve arel an +at~eiu IA) L LIJJ4oU

Dr. H. J. Hoffamann of the Technische Hochscule Darmstadt for insightful comments on
an early version of this document.

6

NRL REPORT 7847

REFERENCES

1. D. L. Parnas, "Some Conclusions from an Experiment in Software Engineering," Proc.
iQ'7 0 Pa1 TanJ (...... f'.--S APT1DQ .. l Al n UQr. Mn.. 10r10LU I0 a r aa *IJEIII.A tfl.FUAJ. . tSSIL *AJ. Ar .R $3 VCJA. 4.Lp p. iP a# L'JV% -. . 7u ,.

2. VI. L1e. rarnas, "On tbe urnirm Lo ue uneu 11 ±.ecPposing oyuwmu irL mWuuuncs,
Commun. ACM vol. 15, No. 12, 1053-1058 Dec. 1972.

3. D. L. Parnas, "A Technique for Software Module Specification With Examples,"
Commun. AUM vol. 15, No. 5, 330-336 May 1972

W. A. Wulf, and M. Shaw, "Global Variable Considered Harmful,"" SIGPLAN Notices
vol. 8, No. 2 (Feb. 1973).

D. L. Parnas, "Response to Detected Errors in Well-Structured Programs," Carnegie-
Mellon University Technical Report, July 1972.

J. S. Miller, C. M. Mikkelsen, J. R. Nestor, B. M. Brosgol, J. T. Pepe, and R. Fourer,
CS-4 Languge Reference Manual and Operating System Interface. Contract
N00123-72-C1177, NEW, San Diego, Dec. 1913.

7

4.

t.

i0.

